
Recent Developments in the

Analysis of Coupled Oscillator

Arrays

Ronald J. Pogorzelski

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California 91109

[ The rematch dea_qbed in this pap_ wu pedmlned by the Cent" foe Space Micmelectroai_ I

T_lolly, Ja Pmpul_doa/..atbo_ory. Cllifmma Imdtute of Technology. ted was supported by the

Ballistic Missile Defeme Orliaoizalion through an agreement with the NadooM Aetonautica and Space

Administration. l



Introduction
• Consider a linear array of coupled oscillators.

- Achieves high radiated power through coherent spatial

power combining.

- Usually designed to produce constant aperture phase.

• Oscillators are injection locked to each other or to

a master oscillator to produce coherent radiation.

• Oscillators do not necessarily oscillate at their

tuning frequency.

• York, et. al. have shown that the phase of each
oscillator is a function of the difference between

the tuning frequency and the oscillation

frequency. 2

Our purpose in coupling oscillators together is to achieve high radiated power
through the spatial power combining which results when the oscillators are
injection locked to each other. York, et. al. have shown that, left to themselves,
the ensemble of injection locked oscillators oscillate at the average of the tuning
frequencies of all the oscillators.



Coupled Oscillators for Radiating

Aperture Phase Control
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Oscillators

This shows the concept of controlling the phase in a radiating aperture using

coupled electronic oscillators. The amplifiers serve two purposes; they provide

for high radiated power and they isolate the oscillators from the parasitic

couphng between the radiating elements thus permitting more precise control of

the nature of the interoscillator coupling.



Injection Locking
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a_,_ is the frequency

to which the oscillator

is tuned.

Consider a single injection locked oscillator. We represent the signals as

complex functions as indicated. In steady state, of course, the oscillator will

oscillate at the injection frequency. The transient (time varying) behavior is

governed by the indicated differential equation. Using this equation we can

formulate the theory of a set of coupled oscillators.



Coupled Oscillators
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In the continuum model:
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Here we adapt the preceding differential equation to describe the behavior of a

linear array of coupled oscillators with nearest neighbor coupling. Using a

continuum model of this description leads to the partial differential equation

shown at the bottom of the vugraph. Tau is time multiplied by the locking

bandwidth of the oscillators.



Coupled Oscillators

(Continued)

Define the phase of the ith oscillator, ¢, ,by:

6, = (.O,,/ t + _,

Then,
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Laplace transformation yields,

ox 2
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We define the phase of the ith oscillator with respect to a reference frequency to

be selected to be the initial ensemble frequency of the array which has been

shown to be the initial average of the oscillator tuning frequencies. In the case

where the oscillator at x=b is detuned by C (measured in locking ranges), the

partial differential equation we wish to solve take the form shown.



Boundary Conditions
Boundary conditions can be derived from,
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Tune added oscillators so that, ¢(-a-l)= ¢(-a)

Then,
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¢(a + 1) = ¢(a)

That is, the classical

Neumann conditions.

To find the solution corresponding to an array of finite length, 2a, one must

effectively add homogeneous solutions of the equation to the particular integral

in sufficient amounts to satisfy the boundary conditions at the ends of the array.

These boundary conditions can be ascertained using the artifice indicated here.

That is, two fictitious oscillators are added to the array, one at each end. These

oscillators are assumed to be dynamically tuned in such a manner as to maintain

their phase equal to the ighase of the corresponding actual end oscillator. This

condition assures that no injection effect is transmitted between these pairs of

oscillators. This shows that the correct boundary condition is one of classical

Neumann type applied one half unit cell outside each end of the array.



The Finite Array Solution

The solution can be immediately written as a sum of the

eigenfunctions.
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and the inverse Laplace transform is merely the sum of the

residues; i.e.,
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The solution can be written using the well established theoretical foundation of

Sturm and Liouville. The inverse Laplace transform follows immediately in

view of the simple pole appearing in each term of the sum. There is a simple

pole at the origin resulting from the denominator s in front of the summations

and this leads to the steady state solution as an eigenfunction sum. In addition,

there is one double pol e at the origin leading to the term linear in time. This

term is a manifestation of the shift of the array ensemble frequency from that

before the step detuning of the oscillator at x=b.



The Finite Array

(Continued)
It should be noted that the time constants in the dynamic solution

are given by the eigenvalues. The slowest time constants are:

cr_,. "k2.a +I)

for nonsymmetrical detuning

for symmetrical detuning

In bothcases the response time is proportional to the square of the

number of oscillators in the array.

A significant result of this analysis is that the response time of such an array is

proportional to the square of the number of oscillators. This is apparently a well

known result in diffusion theory and arises here because the differential equation

governing the phase dynamics is of diffusion type.



The Finite Array Solution
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This is a graphical representation of the solution for the finite length array with

oscillator "5" step detuned at t=0. Here again it is merely a plot of the analytical

solution obtained via the Laplace transformation.
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Beamsteering Dynamics

Equal and opposite detuning of the end oscillators; i.e.,

At-or. = -Aco R = Aa h.

yields,
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II

According to Liao, et.al. [IEEE Trans. MTl'-41,pp. 1810-18115, Oct. 1993],

beamsteering is accomplished by equal and opposite detuning of the end

oscillators of the array. The solution for the phase distribution can be obtained

from the solution for detuning one arbitrary oscillator (x=b) by superposition

(subtraction) of two solutions, one for b=a and one for b=-a. The time domain

result is as shown.

II



Beamsteering Phase
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This is a graphical representation of the beamsteering phase solution just

obtained.
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Far Zone Radiation Pattern
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This plot shows the dynamics of the far zone radiation pattern during

beamsteering. It was obtained by computing the radiation pattern for each time

value by integration over the aperture using the phase solution represented on

the previous vugraph. Note that the beam integrity and sidelobe structure is

maintained throughout the transient period.

13



Scanning via Injection

Concept due to K. Stephan [IEEE Trans.

MTT-34, pp. 1017-1025,October 1986].

- Linear array of mutually injection locked VCOs.

- External injection locking of end oscillators.

• Shift relative phase of injection signals.

• Linear aperture phase with variable gradient.

- Analysis via numerical solution of a system of first

order nonlinear differential equations based on Adler's

theory of injection locking.

14

The fundamental concept of steering phased array beams by appropriately

injection locking the end oscillators of a linear array originated with Karl

Stephan circa 1986. He suggested that linear phase progressions along the array

could be established if the end oscillators were injection locked to a common

external source and a phase shifter were inserted in one line to control the

relative phase of the two injection signals.

This analysis of the array took the form of numerical solution of a system of first

order nonlinear differential equations derived using Adler's theory of injection

locking. This made intuitive understanding of the dynamics difficult.

14



Stephan's Beamsteering Scheme
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This diagram shows the Stephan scheme for beam steering. The master

oscillator provides injection signals to the two end oscillators while the phase

shifter controls the relative phase of these signals. The result is a linear phase

progression across the array.
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Injection Locked Coupled

Oscillator Array
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This shows the concept of controlling the phase in a radiating aperture using

coupled electronic oscillators. The pth oscillator is injection locked to an

externally derived signal. It will be found that this signal provides a means of

controlling the aperture phase distribution of the array.
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Injection Model
Let the injection signal be represented by:

V(x)- ACOt"ck'ru'J8(x- p)
Amlock

The continuum equation is,
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Laplace transformation yields,
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We choose, for analytical convenience, to represent the injection term in terms

of the Dirac delta function. Upon Laplace transformation with respect to the

time variable, the differential equation finally takes the form shown. This

differential equation forms the basis of the analysis to follow.

17



Finite Array Solution

Postulate, /_(x, s) = Cbe -Ix-bt'q + CRe -_ + CLe _ -- CO
$2

Boundary conditions at the injection points and Neumann

conditions at the array ends results in,

ff(x,s) = s' [ 2"_ sinh[.4rs'(2a + 1)]+ C cosh[.Cts(2b)]+ C cosh[.4"J'(2.a + 1)] - s _

FV(x,s) = _ [ 2xF_sinh[_s(2a + 1)]+ Ccosh['4rs(2b)]+ Ccosh[x/s(2a + I)] -'7

18

Postulating a solution of the form shown and applying the boundary conditions

at the array ends and the slope discontinuity condition at the injection point to

determine the unknown constants, we obtain the solutions shown for the phase

and frequency distributions in the Laplace domain.

18



Finite Array with One

Injection Point
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The solution for the phase distribution of a twenty-one oscillator array with

oscillator number five externally injection locked to a signal with a frequency

step at time zero is shown on the left. The corresponding frequency solution is

shown on the right.
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Beam Steering Example
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This is a graphical representation of the example of beam steering.

2O



Gradual Phase

Change

Step injection phase change limited to less than

ninety degrees.

- Yields extremely limited beam steering angles.

- Can be mitigated by gradual phase change.

Gradual change result can be obtained by
convolution with a Gaussian.

- Time domain solution is expressed as a sum of

-exponentials.

- Convolution of a Gaussian and an exponential can be

expressed as multiplication by a function involving

complementary error functions. 21

This solution has the disadvantage that the total phase difference between the

array ends can be no more than 180 degrees leading to very small scan angles.

This limit derives from the limitation on the phase difference between adjacent

oscillators to 90 degrees. Fortunately, this can be mitigated by gradually

changing the phase instead of stepping it. This allow the neighboring oscillator

to follow the phase chart, ge and thus to minimize the difference. In that case the

maximum end to end phase is 90 degrees time the number of oscillators less one.

21



Gradual Steering Example
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The result is shown here and clearly provide much greater flexibility in terms of

the phase excursion across the array which is obtainable; in this case nearly 1200
degrees.

22



Far Zone Field
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This is a plot of the far zone field pattern of an array of twenty-one elements

separated by a half wavelength and fed with the signals from the twenty-one

oscillator array with phase distribution shown in the previous vugraph. The

beam steering dynamics is clearly displayed.

23



The M by N Array
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This diagram schematically represents a (2M+1) by (2N+l) array of oscillators

coupled to nearest neighbors This is the array to be analyzed in the following

The oscillators shown in dashed lines are external sources which provide the

properly phased injection signals to the perimeter oscillators of the array

24



The Continuum Model
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Thus, defining a continuous phi function and continuous variables x and y

indexing the oscillators, we arrive at the partial differential equation for phi

shown. As in the one dimensional case, V represents the distribution and

strength of the injection signals with phase Phiinj" Tau is time measured in

inverse locking ranges.

25



A Numerical Example

Consider a 21 by 21 element square array.

Radiating elements:

- Half wavelength spacing

- Connected to each oscillator

26

Consider a 21 by 21 element array with one radiating element connected to each

oscillator. Let the radiating elements be spaced one half wavelength apart and

let the external injection signals be applied to the perimeter oscillators per the

preceding theory. The following vugraphs show a series of computed results

concerning the aperture phase and far zone field of such an array.

26
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These graphs show the time evolution of the phase when detuning appropriate to

beamsteering is applied. Note that the steering voltages are constant along each

edge of the array.
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This graph shows the beam peak (dots) and the three dB contour (closed curves)

as a function of time during the beamsteering transient resulting when a step

steering voltage designed to steer the beam thirty degrees off normal is applied
at time zero.

28
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During the transient period, the aperture phase is nonplanar. This results in a

temporary reduction in gain due to phase aberration. This graph shows this gain

reduction as a function of time compared with the projected aperture loss to be

expected for each beam position. These curves were obtained by pattern

integration.
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This graph shows the result of four sets of steering voltages applied in rapid

succession. Note that the aberration effects seem to be greater when steering

from one off axis position to another than when steering to or from normal.
I
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These graphs show the time evolution of the phase when injection phase

appropriate to bcamstcering is applied. Note that this phase progression is linear
along each edge of the array.
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This graph shows the beam peak (dots) and the three dB contour (closed curves)
as a function of time during the beamsteering transient resulting when a step

steering injection phase designed to steer the beam thirty degrees off normal is

applied at time zero.

32
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During the transient period, the aperture phase is nonplanar. This results in a

temporary reduction in gain due to phase aberration. This graph shows this gain

reduction as a function of time compared with the projected aperture loss to be

expected for each beam position. These curves were obtained by pattern

integration.

The irregular behavior is attributed to the fact that the abscissa is time as

opposed to angle. Thus, the irregularities are due to changes in the rate of beam

motion.
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This graph shows the result of four sets of steering injection phases applied in

rapid succession. Note that the aberration effects seem to be greater when

steering from one off axis position to another than when steering to or from

normal.
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Summary of Key Results
• Inter-oscillator phase difference

- Limited to 90 degrees.

- Limit can be mitigated by:

• Reducing the element spacing.

• Adding oscillators between the radiating ones.

• RacLiatmgat a harmonic of the coupling frequency.

• The response time of the array varies as the square of its length.

• The maximum step detuning of a single oscillator of a one dimensional array

approaches two locking ranges for a large array.

• Ifallof theoscillatorsareinjectionlocked the responsetime isthatof a single

oscillator.

• This finearizcd model substantiates the beam steering results of Stephan.

• The injection signal phase is limited to 90 degrees from injected oscillator

phas_ unless appfied gradually.

• The maximum stepchange infrequencyof injectionof one of theoscillatorsof

a one dimensionalarrayislimitedto thelockingrange dividedby the number

of oscillators.
35

In conclusion, the chart summarizes the key results obtained to date via

continuum modeling concerning the dynamic behavior of one and two

dimensional coupled oscillator arrays involving either detuning or external

injection locking of the oscillators.
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